If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+16x-70=0
a = 8; b = 16; c = -70;
Δ = b2-4ac
Δ = 162-4·8·(-70)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{39}}{2*8}=\frac{-16-8\sqrt{39}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{39}}{2*8}=\frac{-16+8\sqrt{39}}{16} $
| 11^4x=15^-x+5 | | 4/3x+5=x/2 | | 3x+6x=49 | | 3n^2-60=8n | | 10x-4+6x=6(6x-2)+3 | | 15x-3+2x=5(5x-2)+3 | | -2y+6(y-2)=-32 | | 20=0.36x+15.9 | | 4v+4(v+3)=4 | | 5s/9=10 | | 8y-16=4y+12 | | x²+2x+11=0 | | (x-2)^2+16*x^2+5*x+16=0 | | -6w+2(w-7)=14 | | 17=0.36x+15.9 | | 125^6-2x=5^x^2 | | (10x+30)+40=180 | | 4a-7=-21 | | 7(u+7)-4u=25 | | (10x+30)=40=180 | | 4(3p-2)-5(3p-1)=0 | | 8+2(7y-3)=-4(3y-3)+8y | | x-3=(5x+25)+1 | | x+7/x=2x | | 2x+3/9=3x-5/4 | | x-6+2(6x+7)=-2(x+5) | | 6x=3x-(x-8) | | 5-2(3-2a)=6 | | x-6+2(6x+7)=-2(x-5) | | (5x+9)=104 | | -2(-6r+3r+1)=10 | | 3x-174=0 |